您好!欢迎来到搜维尔虚拟现实超市! ,新用户?[免费注册]
我的订单|我的收藏|我的商城|帮助中心|返回首页
虚拟现实新闻>VR>行业用户>研究院

许以超

文章来源:[SouVR.com]网络收集整理 作者:Frank/Tracy 发布时间:2010年03月18日 点击数: 127 次 字号:


个人简介

  许以超,数学家。从事代数和多复变函数论研究。在复齐性有界域方向有重要的开创性工作。


许以超-人物年表

  1933年10月7日 出生于浙江省杭州市。
  1952年 考取北京大学数学力学系。
  1956年 毕业于北京大学数学力学系数学专业。
  1956年 分配到中国科学院数学研究所任研究实习员。
  1957年春 考取中国科学院数学研究所研究生。
  1961年 在中国科学院数学研究所研究生毕业。
  1962-1998年 任中国科学院数学研究所助理研究员,副研究员,研究员。
  1986年 被国家学术委员会聘为博士生导师。
  1999年 在中国科学院数学研究所退休。
  2000年 被河南大学数学系聘为教授。
  1988-1995年 当选为中国数学会理事。
  1992年起 任中国数学会奥林匹克委员会委员.中国数学奥林匹克高级教练,国家级教练。


许以超-人物经历

  许以超,1933年10月7日出生于浙江省杭州市。在抗日战争时期入小学,边逃难,边念书。初小在遵义,高小在重庆。初中在重庆1年。当时,因家境贫寒,他患急性阑尾炎未能治疗。半年后,阑尾炎再次发作。手术时,因粘结严重而用乙醚作了全身麻醉,脑部受到影响,导致记忆力较差。念初一时,正值抗日战争胜利前后,加上生病休学、转学等原因,他前后进了5所学校。由于当时沿海中学的教学水平远好于内地,所以从重庆、上海、再到杭州共上了两年半的初一;其后才勉强升入初二。这些坎坷的童年经历使他养成了坚韧不拔的毅力和勤奋敬业、不怕吃苦的精神,为他后来在数学的研究和教学中取得优异成绩奠定了坚实基础。
  许以超落脚到杭州念书,主要是因为父亲失业,家庭生活困难,无力承担生活学习费用;而杭州许氏家族,在清朝时是名门世家,祖产田地集中,传统重视念书,成立了许氏义庄来管理和支持在杭州念书的族人,学生的所有学杂费及基本生活费用全部可以去义庄领取。借助义庄的支持,他在杭州住校读完初中。解放后,母亲由南京到上海工作,他随母亲到上海,转入敬业中学念完高中。
  由于生病、转学等原因,他在初一时成绩不好。语文课文背不下来,算术题也做不出来。但是,从初二开始他的数学天赋逐渐显露出来。当时的代数课,老师经常讲半堂,让学生练习半堂。在练习中老师发现许以超的演算能力很强,所以经常叫他在黑板上演算例题和习题,这逐渐培养了他对数学的兴趣。他很快发现小学和初一算术中的所有题目都可以用联立方程很简单地做出来。从初三到高中,一直遇到好的数学老师,他对数学的爱好也就由此逐步确立了起来。对数学的兴趣带动了他对物理及化学的兴趣;从初二开始,他的理科成绩在班上一直是第一。
  1952年高中毕业,他以优异的成绩考入北京大学数学力学系。当时院系调整刚好结束,北京大学数学力学系是由原清华大学、北京大学和燕京大学三校数学系的主要教授组成,师资力量雄厚。系里为院系调整后的第一届学生安排了很强的基础课老师。江泽涵教解析几何,闵嗣鹤教数学分析,段学复教高等代数,丁石孙教线性代数,沈克琦教物理。当时的教学是用莫斯科大学数学系的大纲,教材全是俄文译本,课程内容极多。严格、扎实、宽厚的基础训练为他后来的研究工作提供了极其有力的支撑。
  数学是他最有兴趣的学科。在大学中,他充分利用北京大学良好的学习条件,全力以赴地学习。在掌握了老师所讲内容之后,经常主动去图书馆找参考书看,找难题来做。为了多挤时间,常常连学校安排的午睡时间也牺牲掉。他平时不多言谈,不喜与人过多交往。这种性格,客观上促成他把全部心思都放在学习上。大学四年级他报名进入代数专门化学习。经段学复、聂灵沼和丁石孙等老师的指导,许以超在特征p>0域上单李代数方面做出了两篇很优秀的学术论文:其一是证明了一类单李代数在扩充到代数封闭域时,成为有限个互相同构的单李代数理想的直接和,论文发表在《北京大学学报》上;另一是在代数封闭域上找到了一类新的单李代数,该结果在送出审查时,发现与当时刚到的1956年的Trans.Amer.Math.Soc.上R.雷(Ree)之博士论文“Ongeneralized Witt algebras”的结果相同,因此没有发表。但由此可见,许以超在大学时已经具备了从事国际先进水平科研工作的基础和能力,获得了具有国际水平的研究成果。
  在大学学习期间,许以超还受到他的亲戚许宝先生的影响。许宝要求他在读书和研究中,要做到精益求精,要以解决问题为目的,不要贪多,不要追求论文数量。这些思想对他以后科研工作中所表现的大家风范有一定影响。大学毕业后,他被分配到中国科学院数学研究所工作。数学所优良的研究条件和研究环境把他的研究工作推向了新的高度。1957年初,他报考了数学所的研究生,并以总分第一的好成绩被录取,导师为华罗庚教授。念研究生不久遇到红专辩论,许以超和陈景润被定为数学所的白旗。拔白旗的结果是:陈景润被调离数学所到东北:许以超因为是研究生,按科学院文件规定,毕业后再处理,所以仍然留在数学所。1959年,华罗庚提出不再带代数研究生,并要求许以超改为多复变函数论的研究生。此后,他的工作主要在多复变函数论及代数方面,共发表论文40余篇,出版著作6本。


许以超-学术成就

  许以超主要在复齐性有界域方面开展研究工作,获得了十分丰富的研究成果,做出了具有国际先进水平的开创性工作,开辟了复齐性有界域研究方面的新局面。单复变函数论中著名的黎曼(Riemann)定理断言:边界至少两点的单连通域全纯等价于单位圆盘。该结果不能推广到多个复变数的情形。E.嘉当(Cartan)引进了埃尔米特(Hermite)对称空间,从齐性空间的角度给出了完全分类,证明了它是四大类典型域(可以在复欧氏空间中明确定义)和两个例外的不可分解埃尔米特对称空间(一为复16维,另一为复27维)的拓扑积。后来,哈里希—钱德拉(Harish-Chandra)证明了埃尔米特对称空间可以全纯地嵌入到欧氏空间中,且为有界域(称为对称有界域),但仍不知两个例外情形是个什么样的域。由于埃尔米特对称空间是齐性复流形,嘉当猜想:任何齐性有界域都全纯等价于对称有界域。华罗庚则给出了一个弱的猜想:任何齐性有界域的全纯截曲率恒非正。1959年到1963年,前苏联柏雅茨基—沙皮罗(Piatetski-Shapiro)用两个反例否定了嘉当猜想,引进了西格尔(Siegel)域,证明了西格尔域(是无界域)全纯等价于有界域,并且与温贝格(Vinberg)和季特金(Gindikin)合作证明了任意齐性有界域必全纯等价于齐性西格尔域,因此,齐性有界域在全纯等价下的分类就化为齐性西格尔域在仿射等价下的分类。1961年,陆启铿和许以超用一些反例否定了华罗庚猜想。
  从分类的角度,下一步的问题是齐性西格尔域的分类。许以超将这一问题化为一个初等的矩阵论问题。他首先定义了一批实及复矩阵构成的集合(称为正规矩阵集),利用这批矩阵引进了正规西格尔域(它是复欧氏
共3页 您在第1页 首页 上一页 1 2 3 下一页 尾页 跳转到页 本页共有3489个字符
该信息所属栏目不允许发表评论!
  • 暂无资料
  • 暂无资料
  • 暂无资料
  • 暂无资料
  • 暂无资料