航空航天仿真技术与方法的演进发展
纵观过去100年间飞机的演进变革,技术发展的步伐清晰可见。在航空航天与国防行业发展的最初阶段,飞机制造主要采用木材与织物。到1919年,首架全金属飞机初翔长空。Junker sJ-13(后来称为F-13)不但是首架全金属飞机,而且在技术上实现的飞跃也使其成为首架实用性悬臂式(内拉撑)下单翼机。
仅仅在5年之后,Junkers的飞机供货量即已占全球运输机的40%1。1933年,另一架创新型飞机道格拉斯DC-1首次升空。DC系列飞机(DC-1、-2与-3)大获成功。以科技推进设计与成形的方法是此款飞机设计的关键要素之一。其成形归功于广泛的风洞测试,这些测试降低了机翼/机身接缝湍流,同时增强了襟翼的有效载荷1。最近,两款更具创新性的飞机设计是洛克希德•马丁公司(Lockheed Martin)的F-117隐形飞机和波音(Boeing)787。产品
创新的各个阶段都采用可使这些设计得以实现的关键技术。拜20世纪70年代后期开发的工程软件与计算功能所赐,F-117拥有与众不同的网格曲面外形。Lockheed Martin公司开发的计算机程序名为Echo,能够使飞机实现隐形。目前,Boeing 787有望成为首架大部分结构采用复合材料制造的商用飞机。
从航空航天与国防行业的发展史可以非常清晰地看到,重大突破(无论是飞机、卫星、宇航员太空服还是其它成功的新产品)的动力来自于材料、技术与方法领域的创新。SIMULIA的现实仿真解决方案使企业能够改进现有工艺并开发新方法。我们的研发团队致力于开发新的分析功能,改进高性能计算,实现真正的多物理场仿真,同时还可提供完成多领域优化所需的工具。这些功能旨在为行业特定的工作流程提供支持,而且也是推进航空航天与国防创新的基石。
新趋势:仿真事件,而不仅限于载荷工况
传统上分析航空航天与国防结构是为了满足特定载荷工况。这种载荷工况可能是静态载荷、动态载荷或热载荷。但实际上,飞行器受到的影响包括“事件”,而不仅仅是“载荷工况”。例如,起落架的载荷工况可能是特定的垂直力和侧向力。可以把它与实际降落事件对比,此过程中需要放下起落架,起落架锁定到位,起落架需承受空气动力,在降落之前有可能受到鸟类或碎片撞击,然后在着陆时会受到跑道冲击。为限定代表上述事件的载荷工况已经做出了一些假定。公司目前正在减少其所做假定的数量,以便更精准地仿真此事件并了解其产品的性能。为了逼真地仿真此事件,相关计算机模型必须整合机械系统、控制系统、流体建模、显式动态冲击建模、非线性应力分析、接触行为以及损伤模型(甚至可能还包括复合材料损伤模型)。此外,业界还希望能够优化这些复杂的模型。
Abaqus FEA可提供执行完整事件仿真所需要的技术,这种技术使企业能够大力发展其方法,从而充分发挥这些现实仿真功能的优势。
大规模非线性分析
传统上非线性分析用于在组件层面了解接合细节、故障模式以及复合材料断裂问题。目前,非线性FEA更多是用于整体航空器结构的大规模仿真,如:机翼组件、机身框体和尾翼2。以前,此类分析只是作为设计末期或者更靠后期阶段的终极任务,用于解决与制造或认证相关的难题。不过,制造商目前正在开发一些分析方法与工艺,能够早在制造和测试之前的设计阶段即可应用高级非线性分析。
高性能计算(HPC)是大规模非线性仿真的关键需求。大型航空航天模型 可能有1000~2000万的自由度(DOF)、5000多个独立部件、10000个紧固件定义以及接触和粘结面定义。解决这些大规模问题需要几十、乃至几百个处理器并行工作。SIMULIA开发团队正在开发能够充分发挥当今计算资源优势的新算法。
全盘掌控
新方法的开发与实施带来了一种需求,要将这些方法作为标准程序来获取和共享。大型模型与多重仿真运行任务也带来管理与保护新建数据的需求。SIMULIA开发了新的仿真全生命周期管理(SLM)解决方案。新产品套件可提供在线协作功能,使分散的团队能够轻松共享仿真方法和结果,从而大大提高对决策过程的信心。此外,它还能够提供在个人级、
>>相关产品